Memantine combined with environmental enrichment improves spatial memory and alleviates Alzheimer's disease-like pathology in senescence-accelerated prone-8 (SAMP8) mice

نویسندگان

  • Jingde Dong
  • Mi Zhou
  • Xiaoqiang Wu
  • Mingyang Du
  • Xiaoshan Wang
چکیده

Memantine is a N-methyl-D-aspartate (NMDA) receptor antagonist approved for the treatment of moderate to severe Alzheimer's disease (AD). Environmental enrichment (EE) has shown significant beneficial effects on functional improvement in AD. In this study, we sought to determine whether combining these two distinct therapies would yield greater benefit than either drug used alone. We investigated the effect of memantine combined with EE on spatial learning and memory and AD-like pathology in a widely used AD model, the senescence-accelerated prone mice (SAMP8). The SAMP8 mice were randomly assigned to enriched housing (EH) or standard housing (SH), where either memantine (20 mg/kg) or saline was given by gastric lavage once daily continuously for eight weeks. Our results showed that, when provided separately, memantine and EE significantly improved spatial learning and memory by shortening escape latencies and increasing the frequency of entrance into the target quadrant. When combined, memantine and EE showed additive effect on learning and memory as evidenced by significant shorter escape latencies and higher frequency of target entrance than either drug alone. Consistent with the behavior results, pathological studies showed that both memantine and EE significantly reduced hippocampal CA1 neurofibrilliary tangles (NFTs) as well as amyloid beta precursor protein (APP) levels. Combining both therapies synergistically lessened NFTs and APP expression compared to either drug alone in SAMP8 mice, indicating that the combination of memantine with EE could offer a novel and efficient therapeutic strategy for the treatment of AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease

Glycosylation is one of the most common eukaryotic post-translational modifications, and aberrant glycosylation has been linked to many diseases. However, glycosylation and glycome analysis is a significantly challenging task. Although several lines of evidence have indicated that protein glycosylation is defective in Alzheimer's disease (AD), only a few studies have focused on AD glycomics. Th...

متن کامل

Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more lik...

متن کامل

Single nucleotide variants (SNVs) define senescence-accelerated SAMP8 mice, a model of a geriatric condition.

One of the major challenges in neurodegenerative research is modeling systemic aging. Here, senescence-accelerated mice such as the multigenic SAMP8 (senescence accelerated prone 8) mice are useful as they are characterized by an early manifestation of senescence that includes a shortened lifespan and impaired brain and immune functions. While SAMP8 mice are widely used tools to address aging a...

متن کامل

The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer’s Disease

Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated m...

متن کامل

Antisense directed at the Abeta region of APP decreases brain oxidative markers in aged senescence accelerated mice.

Amyloid beta-peptide (Abeta) is known to induce free radical-mediated oxidative stress in the brain. Free radical-mediated damage to the neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD). Abeta is produced by proteolytic processing of the amyloid precursor protein (APP). The senescence accelerated mouse prone 8 (SAMP8) strain was developed by phenotypi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2012